Delany, M. E. & Bazley, E. N. Acoustical properties of fibrous absorbent materials. Appl. Acoust. 3, 105–116 (1970).
Tang, X. & Yan, X. Acoustic energy absorption properties of fibrous materials: A review. Compos. Part A 101, 360–380 (2017).
Kozlov, A. S., Baumgart, J., Risler, T., Versteegh, C. P. C. & Hudspeth, A. J. Forces between clustered stereocilia minimize friction in the ear on a subnanometre scale. Nature 474, 376–379 (2011).
Shi, J. et al. Smart textile‐integrated microelectronic systems for wearable applications. Adv. Mater. 32, 1901958 (2019).
Abouraddy, A. F. et al. Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat. Mater. 6, 336–347 (2007).
Yan, W. et al. Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater. Today 35, 168–194 (2020).
Weng, W. et al. A route toward smart system integration: from fiber design to device construction. Adv. Mater. 32, 1902301 (2020).
Chen, G., Li, Y., Bick, M. & Chen, J. Smart textiles for electricity generation. Chem. Rev. 120, 3668–3720 (2020).
Khudiyev, T. et al. 100-m-long thermally drawn supercapacitor fibers with applications to 3D printing and textiles. Adv. Mater. 32, 2004971 (2020).
Rein, M. et al. Diode fibres for fabric-based optical communications. Nature 560, 214–218 (2018).
Zhang, X. A. et al. Dynamic gating of infrared radiation in a textile. Science 363, 619–623 (2019).
Hsu, P. C. et al. Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016).
Zhu, B. et al. Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat. Nanotechnol. 16, 1342–1348 (2021).
Shi, X. et al. Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021).
Loke, G. et al. Digital electronics in fibres enable fabric-based machine-learning inference. Nat. Commun. 12, 3317 (2021).
Egusa, S. et al. Multimaterial piezoelectric fibres. Nat. Mater. 9, 643–648 (2010).
Chocat, N. et al. Piezoelectric fibers for conformal acoustics. Adv. Mater. 24, 5327–5332 (2012).
Fay, J. P., Puria, S. & Steele, C. R. The discordant eardrum. Proc. Natl Acad. Sci. USA 103, 19743–19748 (2006).
Qu, Y. et al. Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing. Adv. Mater. 30, 1707251 (2018).
Acosta, M. et al. BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev. 4, 041305 (2017).
Setiadi, D., Binnie, T. D., Regtien, P. & Wübbenhorst, M. Poling of VDF/TrFE copolymers using a step-wise method. In 9th Int. Symp. Electrets (ISE) (eds Xia, Z. & Zhang, H.) 831–835 (IEEE, 1996).
Zhang, Y., Bowen, C. R. & Deville, S. Ice-templated poly(vinylidene fluoride) ferroelectrets. Soft Matter 15, 825–832 (2019).
Safari, A. & Akdoğan, E. K. (eds) Piezoelectric and Acoustic Materials for Transducer Applications (Springer, 2008).
Lang, C., Fang, J., Shao, H., Ding, X. & Lin, T. High-sensitivity acoustic sensors from nanofibre webs. Nat. Commun. 7, 11108 (2016).
Kang, S. et al. Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones. Sci. Adv. 4, eaas8772 (2018).
Khan, A., Abas, Z., Soo Kim, H. & Oh, I. K. Piezoelectric thin films: an integrated review of transducers and energy harvesting. Smart Mater. Struct. 25, 053002 (2016).
Kinsler, L., Frey, A., Coppens, A. & Sanders, J. Fundamentals of Acoustics 4th edn (Wiley, 2000).
Yang, Y. & Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48, 1465–1491 (2019).
Xiong, J., Chen, J. & Lee, P. S. Functional fibers and fabrics for soft robotics, wearables, and human–robot interface. Adv. Mater. 33, 2002640 (2021).
Loke, G. et al. Computing fabrics. Matter 2, 786–788 (2020).
Wang, W., Yu, A., Zhai, J. & Wang, Z. L. Recent progress of functional fiber and textile triboelectric nanogenerators: towards electricity power generation and intelligent sensing. Adv. Fiber Mater.3, 394–412 (2021).
Ahmed, A., Hossain, M. M., Adak, B. & Mukhopadhyay, S. Recent advances in 2D MXene integrated smart-textile interfaces for multifunctional applications. Chem. Mater. 32, 10296–10320 (2020).
Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016).
Han, M. et al. Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nat. Electron. 2, 26–35 (2019).
Yang, G.-Z. et al. The grand challenges of Science Robotics. Sci. Rob. 3, eaar7650 (2018).
Huang, Y. et al. Enhanced piezoelectricity from highly polarizable oriented amorphous fractions in biaxially oriented poly(vinylidene fluoride) with pure β crystals. Nat. Commun. 12, 675 (2021).
Wang, K., Godfroid, T., Robert, D. & Preumont, A. Adaptive shell spherical reflector actuated with PVDF-TrFe thin film strain actuators. Actuators 10, 7 (2021).
Wang, K., Alaluf, D., Rodrigues, G. & Preumont, A. Precision shape control of ultra-thin shells with strain actuators. J. Appl. Comput. Mech. 7, 1130–1137 (2021).
Guo, S., Duan, X., Xie, M., Aw, K. C. & Xue, Q. Composites, fabrication and application of polyvinylidene fluoride for flexible electromechanical devices: a review. Micromachines 11, 1076 (2020).
Kim, H., Fernando, T., Li, M., Lin, Y. & Tseng, T. L. B. Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites. J. Compos. Mater. 52, 197–206 (2018).
Kim, H. et al. Increased piezoelectric response in functional nanocomposites through multiwall carbon nanotube interface and fused-deposition modeling three-dimensional printing. MRS Commun. 7, 960–966 (2017).
Bodkhe, S., Turcot, G., Gosselin, F. P. & Therriault, D. One-step solvent evaporation-assisted 3D printing of piezoelectric PVDF nanocomposite structures. ACS Appl. Mater. Interfaces 9, 20833–20842 (2017).
Pi, Z., Zhang, J., Wen, C., Zhang, Z.-b & Wu, D. Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) thin film. Nano Energy 7, 33–41 (2014).
Baur, C. et al. Enhanced piezoelectric performance from carbon fluoropolymer nanocomposites. J. Appl. Phys. 112, 124104 (2012).
Zeng, R., Kwok, K. W., Chan, H. L. W. & Choy, C. L. Longitudinal and transverse piezoelectric coefficients of lead zirconate titanate/vinylidene fluoride-trifluoroethylene composites with different polarization states. J. Appl. Phys. 92, 2674–2679 (2002).
Omote, K., Ohigashi, H. & Koga, K. Temperature dependence of elastic, dielectric, and piezoelectric properties of “single crystalline” films of vinylidene fluoride trifluoroethylene copolymer. J. Appl. Phys. 81, 2760–2769 (1997).
Wang, H., Zhang, Q. M., Cross, L. E. & Sykes, A. O. Piezoelectric, dielectric, and elastic properties of poly(vinylidene fluoride/trifluoroethylene). J. Appl. Phys. 74, 3394–3398 (1993).