Single fibre enables acoustic fabrics via nanometre-scale vibrations

Gerard Ortiz
  • Delany, M. E. & Bazley, E. N. Acoustical properties of fibrous absorbent materials. Appl. Acoust. 3, 105–116 (1970).


    Google Scholar
     

  • Tang, X. & Yan, X. Acoustic energy absorption properties of fibrous materials: A review. Compos. Part A 101, 360–380 (2017).

    CAS 

    Google Scholar
     

  • Kozlov, A. S., Baumgart, J., Risler, T., Versteegh, C. P. C. & Hudspeth, A. J. Forces between clustered stereocilia minimize friction in the ear on a subnanometre scale. Nature 474, 376–379 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, J. et al. Smart textile‐integrated microelectronic systems for wearable applications. Adv. Mater. 32, 1901958 (2019).


    Google Scholar
     

  • Abouraddy, A. F. et al. Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat. Mater. 6, 336–347 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, W. et al. Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater. Today 35, 168–194 (2020).

    CAS 

    Google Scholar
     

  • Weng, W. et al. A route toward smart system integration: from fiber design to device construction. Adv. Mater. 32, 1902301 (2020).

    CAS 

    Google Scholar
     

  • Chen, G., Li, Y., Bick, M. & Chen, J. Smart textiles for electricity generation. Chem. Rev. 120, 3668–3720 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Khudiyev, T. et al. 100-m-long thermally drawn supercapacitor fibers with applications to 3D printing and textiles. Adv. Mater. 32, 2004971 (2020).

    CAS 

    Google Scholar
     

  • Rein, M. et al. Diode fibres for fabric-based optical communications. Nature 560, 214–218 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. A. et al. Dynamic gating of infrared radiation in a textile. Science 363, 619–623 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hsu, P. C. et al. Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, B. et al. Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat. Nanotechnol. 16, 1342–1348 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, X. et al. Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Loke, G. et al. Digital electronics in fibres enable fabric-based machine-learning inference. Nat. Commun. 12, 3317 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Egusa, S. et al. Multimaterial piezoelectric fibres. Nat. Mater. 9, 643–648 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chocat, N. et al. Piezoelectric fibers for conformal acoustics. Adv. Mater. 24, 5327–5332 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Fay, J. P., Puria, S. & Steele, C. R. The discordant eardrum. Proc. Natl Acad. Sci. USA 103, 19743–19748 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu, Y. et al. Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing. Adv. Mater. 30, 1707251 (2018).


    Google Scholar
     

  • Acosta, M. et al. BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev. 4, 041305 (2017).

    ADS 

    Google Scholar
     

  • Setiadi, D., Binnie, T. D., Regtien, P. & Wübbenhorst, M. Poling of VDF/TrFE copolymers using a step-wise method. In 9th Int. Symp. Electrets (ISE) (eds Xia, Z. & Zhang, H.) 831–835 (IEEE, 1996).

  • Zhang, Y., Bowen, C. R. & Deville, S. Ice-templated poly(vinylidene fluoride) ferroelectrets. Soft Matter 15, 825–832 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Safari, A. & Akdoğan, E. K. (eds) Piezoelectric and Acoustic Materials for Transducer Applications (Springer, 2008).

  • Lang, C., Fang, J., Shao, H., Ding, X. & Lin, T. High-sensitivity acoustic sensors from nanofibre webs. Nat. Commun. 7, 11108 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, S. et al. Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones. Sci. Adv. 4, eaas8772 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan, A., Abas, Z., Soo Kim, H. & Oh, I. K. Piezoelectric thin films: an integrated review of transducers and energy harvesting. Smart Mater. Struct. 25, 053002 (2016).

    ADS 

    Google Scholar
     

  • Kinsler, L., Frey, A., Coppens, A. & Sanders, J. Fundamentals of Acoustics 4th edn (Wiley, 2000).

  • Yang, Y. & Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48, 1465–1491 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Xiong, J., Chen, J. & Lee, P. S. Functional fibers and fabrics for soft robotics, wearables, and human–robot interface. Adv. Mater. 33, 2002640 (2021).

    CAS 

    Google Scholar
     

  • Loke, G. et al. Computing fabrics. Matter 2, 786–788 (2020).


    Google Scholar
     

  • Wang, W., Yu, A., Zhai, J. & Wang, Z. L. Recent progress of functional fiber and textile triboelectric nanogenerators: towards electricity power generation and intelligent sensing. Adv. Fiber Mater.3, 394–412 (2021).

    CAS 

    Google Scholar
     

  • Ahmed, A., Hossain, M. M., Adak, B. & Mukhopadhyay, S. Recent advances in 2D MXene integrated smart-textile interfaces for multifunctional applications. Chem. Mater. 32, 10296–10320 (2020).

    CAS 

    Google Scholar
     

  • Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016).

    ADS 

    Google Scholar
     

  • Han, M. et al. Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nat. Electron. 2, 26–35 (2019).


    Google Scholar
     

  • Yang, G.-Z. et al. The grand challenges of Science Robotics. Sci. Rob. 3, eaar7650 (2018).


    Google Scholar
     

  • Huang, Y. et al. Enhanced piezoelectricity from highly polarizable oriented amorphous fractions in biaxially oriented poly(vinylidene fluoride) with pure β crystals. Nat. Commun. 12, 675 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, K., Godfroid, T., Robert, D. & Preumont, A. Adaptive shell spherical reflector actuated with PVDF-TrFe thin film strain actuators. Actuators 10, 7 (2021).


    Google Scholar
     

  • Wang, K., Alaluf, D., Rodrigues, G. & Preumont, A. Precision shape control of ultra-thin shells with strain actuators. J. Appl. Comput. Mech. 7, 1130–1137 (2021).


    Google Scholar
     

  • Guo, S., Duan, X., Xie, M., Aw, K. C. & Xue, Q. Composites, fabrication and application of polyvinylidene fluoride for flexible electromechanical devices: a review. Micromachines 11, 1076 (2020).

    PubMed Central 

    Google Scholar
     

  • Kim, H., Fernando, T., Li, M., Lin, Y. & Tseng, T. L. B. Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites. J. Compos. Mater. 52, 197–206 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Kim, H. et al. Increased piezoelectric response in functional nanocomposites through multiwall carbon nanotube interface and fused-deposition modeling three-dimensional printing. MRS Commun. 7, 960–966 (2017).

    CAS 

    Google Scholar
     

  • Bodkhe, S., Turcot, G., Gosselin, F. P. & Therriault, D. One-step solvent evaporation-assisted 3D printing of piezoelectric PVDF nanocomposite structures. ACS Appl. Mater. Interfaces 9, 20833–20842 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Pi, Z., Zhang, J., Wen, C., Zhang, Z.-b & Wu, D. Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) thin film. Nano Energy 7, 33–41 (2014).

    CAS 

    Google Scholar
     

  • Baur, C. et al. Enhanced piezoelectric performance from carbon fluoropolymer nanocomposites. J. Appl. Phys. 112, 124104 (2012).

    ADS 

    Google Scholar
     

  • Zeng, R., Kwok, K. W., Chan, H. L. W. & Choy, C. L. Longitudinal and transverse piezoelectric coefficients of lead zirconate titanate/vinylidene fluoride-trifluoroethylene composites with different polarization states. J. Appl. Phys. 92, 2674–2679 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • Omote, K., Ohigashi, H. & Koga, K. Temperature dependence of elastic, dielectric, and piezoelectric properties of “single crystalline” films of vinylidene fluoride trifluoroethylene copolymer. J. Appl. Phys. 81, 2760–2769 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • Wang, H., Zhang, Q. M., Cross, L. E. & Sykes, A. O. Piezoelectric, dielectric, and elastic properties of poly(vinylidene fluoride/trifluoroethylene). J. Appl. Phys. 74, 3394–3398 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • Next Post

    The Hottest Fashion Trends for Summer 2022

    When it comes to summer style, less really is more. But to get specific, we nailed down the exact runway trends that are inspiring the latest macro and micro looks that will be gracing our presence during everyone’s favorite season. Some are obvious, some are seemingly obscure, and others are […]
    The Hottest Fashion Trends for Summer 2022

    You May Like